
Background: Elderly patients in general exhibit a higher incidence of chronic and neuropathic 
pain conditions. This group poses a particular clinical challenge due to age-related pharmacokinetic 
and pharmacodynamic issues, comorbid conditions, and polypharmacy, as well as frailty and 
cognitive decline. Poor control of pain has consistently been identified as an issue for older people. 
The identification of safe and efficacious treatments for chronic pain remains a critical public health 
concern, especially considering the progressive increase of the world’s elderly population. 

Objectives: This narrative review deals with the principal alterations of the somatosensory system 
together with changes in non-neuronal cells in the course of aging. The possibility to control chronic 
pain based on an innovative strategy which addresses non-neuronal cell dysregulation control will 
also be discussed. 

Study Design: Narrative review. 

Results: Peripheral nerves display functional, structural, and biochemical changes with aging that 
mainly involve Aδ fibers. Alteration in the responses to heat pain in the middle insular cortex and 
primary somatosensory cortex are also observed in the elderly. In general, pain threshold increases 
with age while the threshold of pain tolerance remains unchanged or decreases. Additionally, 
other important modifications of the pain perception system in this age group consist in a clear 
reduction in the descending inhibitory capacity with an associated increase in central sensitization. 
Furthermore, different changes concern immune system cells, such as mast cells and microglia, that 
with age show an increase in their sensitivity to noxious stimuli and a decreased capability to be 
regulated by homeostatic endogenous systems. Since these cells are the primary interlocutors for 
pain neurons, their alterations lead to changes that promote persistent neuroinflammation, thereby 
impacting pain neuronal cell functionality.

Limitation: This review is not an exhaustive review for the current evidence supporting the role 
of immune cells in influencing pain somatosensory neuron functions. It is also important to stress 
the small number of studies designed to determine the efficacy and safety of anti-pain therapies in 
elderly patients. 

Conclusion: Non-neuronal cells of immune system origin such as microglia and mast cells, along 
with astrocytes, are capable of influencing pain somatosensory neuron functions. These nervous 
system non-neuronal cells may thus be viewed as innovative targets for persistent pain control. Among 
therapies aiming at preserving the functionality of non-neuronal cells, palmitoylethanolamide, with 
its high efficacy/risk ratio, may be an excellent co-treatment for the ever-growing elderly population 
with chronic pain.
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stimuli. This review aims to bring together published 
work on changes in the pain somatosensory system in 
the elderly, along with information of mast cell and 
microglia changes that might affect pain processes.

Study Design
This narrative review is based on a literature search 

undertaken using PubMed, and reference lists from the 
most recent reviews as additional sources of primary 
literature, as well as references cited by relevant articles. 
Search terms included “chronic and neuropathic pain,” 
“somatosensory system,” “mast cells,” “microglia,” “older 
adult,” “elderly,” “aging,” “micronized and ultramicron-
ized palmitoylethanolamide,” and “pain management.”

Changes in the Pain Somatosensory System 
in the Elderly

Peripheral nerves display functional, structural, and 
biochemical changes with aging. Morphologic studies 
have reported a loss of myelinated and unmyelinated 
nerve fibers in elderly patients, and several abnormali-
ties involving myelinated fibers, such as demyelination, 
remyelination, and myelin balloon figures (17). The loss 
in structure and function of the peripheral nerve mainly 
involves Aδ fibers (18). In the central nervous system 
(CNS) age specifically affected responses to heat pain 
in the middle insular cortex and primary somatosensory 
cortex (19). As a consequence, pain threshold, which is 
the ability of the somatosensory system to recognize 
and process a painful stimulus, increases with age – 
especially in women (20,21). Functional brain imaging 
of pain responses reveals a parallel decrease in the 
spread and magnitude of brain activation in response 
to acute painful stimuli in the elderly compared with 
young adults even after correcting for age-related re-
ductions in brain volume (22). Therefore, as with other 
sensory functions such as vision and hearing, aging is 
accompanied also by a reduced ability to detect signals 
harmful to the body (presbyalgos). In contrast, the 
threshold of pain tolerance, i.e., the maximum intensity 
of a pain-producing stimulus that a patient is willing to 
accept in a given situation, remains unchanged or even 
decreases with age (13,21,23). Because the elderly un-
derestimate low intensity stimuli but, when perceived, 
overestimate those associated with more intense pain, 
once perceived these conditions can quickly become 
unbearable. This inability to properly recognize danger 
signals probably contributes to an increased frequency 
of accidents among the elderly, and indirectly to the 
increased prevalence of pain in this population (14).

Age brings pain: osteoarthritic back pain, 
especially in the low back or neck (around 
65%), musculoskeletal pain (around 40%), 

peripheral neuropathic pain (typically due to diabetes 
or postherpetic neuralgia, 35%), and chronic joint pain 
(15% – 25%) (1). Pain seems to accelerate aging, as 
well (2). The ever-growing worldwide proportion of 
older people and lifespan (3) begs the questions: will 
population aging be accompanied by a longer period 
of good health, and particularly a long pain-free life? 
Are physicians prepared enough for the challenge of 
persistent pain treatments in the elderly?

The societal burden of persistent pain is consider-
able (4-6). Management of chronic pain is frequently 
complex, since analgesics currently available for chronic 
and neuropathic pain in adults are effective in less 
than 50% of cases and pain relief is usually only partial 
(7). Pain control in the elderly is complicated by many 
unresolved problems, e.g., difficulty of diagnosis, sub-
stantial lack of clinical studies, and total lack of safe 
and effective therapies (8-10). As a result, pain in the 
elderly is oftentimes neither well recognized nor ad-
equately treated (10,11). Pain assessment in the elderly 
is complicated by the frequent presence of chronic 
clinical conditions, the presence of multiple causes of 
pain, and multi-drug treatment that can interfere with 
the mechanisms of pain (12,13). Despite its limitations, 
pain self-reporting is often deemed to be the gold 
standard in pain assessment. However, self-reporting 
might become compromised in neurological disorders 
such as dementia, in which individuals often have little 
ability to communicate (14). The use of rating scales is 
often further complicated by the presence of visual and 
auditory deficits. Although the elderly are the biggest 
users of analgesics, only a small number of randomized, 
controlled trials designed to determine the efficacy and 
safety of these therapies in elderly patients have been 
carried out (9).

The management of chronic pain in the elderly 
constitutes a challenge to the clinician. When consider-
ing pain experience in elderly people, it is important to 
be aware of any age-related alterations in pain report-
ing and processing and factors that might contribute to 
such changes. Positive results in the treatment of pain 
in aging can only be overcome by using innovative ther-
apeutic strategies based both on a knowledge of the 
patient’s real needs and differences in the perception 
and processing of pain, as well as changes associated 
with aging such as alterations in the immune system 
(15,16) which can modify responsiveness to painful 
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Other important changes in an elderly person’s 
pain system concern endogenous pain modulation. 
The descending modulation, from endogenous pain 
inhibitory systems, displays age-related impairment 
in opioid and non-opioid mechanisms. The extent of 
this alteration is quite large, with elderly people show-
ing less than a third of the strength of the induced 
endogenous inhibitory effects on pain sensitivity, 
when compared with young adults (24-27). Inability to 
modulate painful processes contributes to increased 
vulnerability in the development of chronic pain after 
injury or illness in the elderly. Differences in neuroplas-
ticity in the elderly might also contribute to decreased 
pain tolerance. In fact, temporal summation of noxious 
heat seems to occur more readily in the CNS of elderly 

people than in young adults (20,28-30). Endogenous 
pain modulation systems are also altered by the pres-
ence of concomitant diseases or co-morbidities. In 
particular, the high prevalence of chronic diseases 
affecting the CNS in the elderly could contribute both 
to altered neuroplasticity, and an increased predispo-
sition to develop central sensitization. For example, 
dementia might exacerbate age-related impairments 
in pain processing due to the additional burden of 
cognitive impairment and associated neurodegenera-
tive loss in regions typically associated with higher lev-
els of CNS processing of noxious information (23,31). 
Fig. 1 summarizes the referred anatomo-functional 
modifications of the pain somatosensory system, con-
sequent to aging.

Fig. 1. Main changes in the pain somatosensory system and in immune cells affecting pain processes in the elderly.
Pain threshold increases with age while the threshold of  pain tolerance generally decreases with aging. These alterations may be 
related to a progressive impairment of  pain Aδ fibers, a lower inhibitory capacity and facilitation of  pain processes. However, 
the alterations of  immune cells such as mast cells and microglia, strongly participate in aging-induced alteration of  the 
somatosensory system. 
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Immune System Changes in the Elderly Affect 
Pain Processes 

It is important to stress that chronic pain is a precise 
medical condition, and not simply a symptom as acute 
pain. In this condition the somatosensory system is not 
the only, or even the main, protagonist. Chronic pain 
in the elderly is complicated by many changes that pro-
gressively affect the immune system. Immune cells, in 
particular mast cells and microglia, are co-protagonists 
of the somatosensory system, where persistent altera-
tions give rise to chronic pain. Mast cells and microglia 
are the primary interlocutors for pain neurons, both in 
the periphery and at the spinal and supraspinal levels. 
Their alterations lead to changes that promote persis-
tent neuroinflammation, thereby impacting neuronal 
cell functionality (32).

Mast Cells and Microglia Influence Pain Processes
In physiological conditions, pain information be-

gins at nerve endings, which form a functional pain 
unit with nearby tissue capillaries. Peripheral mast 
cells are important players in this functional unit, as 
deduced from their strategic position in proximity to 
sensory nerve endings and vasculature (33). Following 
injury or inflammatory stimuli, mast cell mediators 
such as bradykinin, prostaglandins, and histamine are 
released and stimulate nociceptive afferents. Neuro-
peptides such as substance P may also cause mast cell 
degranulation, creating a bidirectional positive feed-
back-loop (34), up-regulating local inflammation and 
increasing pain. Mast cell recruitment of other immune 
cells, which release pro-nociceptive mediators, can af-
fect not only injured zones but also adjacent territories, 
creating a secondary, widespread hyperalgesia (35). The 
contribution of meningeal mast cells to the activation 
of meningeal nociceptors in the pathophysiology of 
migraine has been extensively documented (36,37). At 
the spinal level, mediators released from dural mast 
cells may reach the superficial laminae to modulate 
synaptic transmission and nociception (38). CNS-located 
mast cells have been suggested to have a role in central 
integration of pain. Mast cells are particularly concen-
trated in the thalamus, an essential nociceptive relay 
where, by releasing mediators such as histamine or se-
rotonin might interact with third-order neurons target-
ing the cortex (39,40). Peripheral and brain mast cells 
cooperate with other immune cells, such as microglia, 
to orchestrate the onset of central sensitization (41). 
In fact, in the absence of a tight physiological control, 
mast cell-nerve terminal activity results in nociceptor 

sensitization, reduced pain threshold at the site of 
inflammation and, ultimately, dysfunctional pain sig-
naling and hyperalgesia (35,42,43). Persistent increased 
responsiveness of nociceptors can also sensitize spinal 
cord neurons, leading to central sensitization (44,45). 

Glial cells are important mediators of pain pro-
cesses at the spinal level (46,47). Microglia interact with 
spinal neurons at the site of injury or disease, as well as 
remotely. Microglia can be activated through engage-
ment of a number of constitutively expressed cell sur-
face molecules, and respond also to pro-inflammatory 
signals released from peripheral cells of immune origin 
– including mast cells (32).

Bidirectional cross-talk between mast cells and 
microglia, directly via cellular mediators and indirectly 
through somatosensory neurons, appears to signifi-
cantly contribute to amplification of peripheral pain 
signals at the spinal level (32,48-50). Activated microglia 
contribute to pain states by releasing pro-inflammatory 
cytokines, chemokines, and proteases. Further, systemic 
inflammation can give rise to signals that communicate 
with the brain and lead to changes in metabolism and 
behavior, including expression of a pro-inflammatory 
phenotype by microglia (51). Astrocytes, the most 
abundant CNS glial cell type involved in neuroinflam-
mation, also play a major role in pain facilitation and 
are a fundamental contributor to neuropathic pain 
(46). The above findings thus support the notion that 
controlling mast cell-glia reactivity can provide an at-
tractive therapeutic avenue for treating neuropathic 
pain (44). 

Mast Cell and Microglia Reactivity Changes with 
Age 

In the elderly, tissue mast cell density is often 
altered as a consequence of an altered production of 
factors that promote or inhibit maturation of resident 
stromal cells (52). However, the production of mast cell 
precursors is not changed. While mast cell maturation 
decreases with age in various tissues, aged mast cells 
show an increase both in their sensitivity to inflamma-
tory mediators and state of degranulation (53,54). Con-
currently, mast cell density increases with age in some 
tissues (55,56). In particular, in the endoneural compart-
ment there is recruitment of non-neuronal cells, includ-
ing mast cells, probably induced by nerve fiber damage 
(57). This increase in endoneural mast cell number and 
progressive sensitivity with aging likely contributes to 
the perceptual and functional alterations of primary 
somatosensory neurons. Hyper-reactive endoneural 
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mast cells, via the uncontrolled release of proteolytic 
enzymes, may contribute directly to progressive impair-
ment of Aδ fibers (18). Both mast cells and microglia, 
the main immune-resident cell in the CNS, undergo a 
change in reactivity with age.

Under physiological conditions, brain parenchymal 
microglia present a ramified or quiescent phenotype 
but, if stimulated, can quickly assume an activated or 
pro-inflammatory phenotype (58). Physiological activa-
tion of microglia generally leads to the resolution of 
neuroinflammation and restoration of tissue homeo-
stasis. In aging, microglia present primarily a primed 
phenotype (59) (Fig. 2). The response of primed microg-
lia to a stimulus is more intense, with a more robust 
production of pro-inflammatory cytokines lasting for 
an extended period. Primed microglia cause persistent 
neuroinflammation capable of damaging tissue integ-
rity and neuron functionality (60).

Aged microglia are primed to be activated and re-
sistant to regulation, that is, sensitive to stimuli which 
induce activation and insensitive to endogenous systems 
of homeostatic regulation (61). Primed microglia in the 

spinal cord and thalamic pain nuclei, as a consequence 
of an excessive response to painful peripheral stimuli, 
facilitate the onset of chronic and/or neuropathic pain 
(62). Primed microglia can also promote the onset of 
pain in the absence of peripheral stimuli (central pain). 
The excess production of pro-inflammatory cytokines by 
primed microglia can act at multiple levels to adversely 
affect pain processes. Direct action on second- and 
third-order somatosensory neurons can cause a state 
of neuronal hyperexcitability (central sensitization) 
(63). In addition, pro-inflammatory cytokines can also 
compromise white matter integrity and ultrastructure 
of the myelin sheath. A decrease of myelin proteins has 
been reported to correlate with increased glial activa-
tion (64). These results are consistent with observations 
relating to age-dependent changes of myelinated Aδ 
type fibers as well as un-myelinated C-type fibers (18).

Altered reactivity of mast cells and microglia in the 
elderly emerges clearly as a co-factor, or even promoter, 
of low-grade inflammation or non-resolving inflamma-
tion characteristic of chronic illness and chronic pain 
(13,65,66). In this situation, there is a chronic and sys-

Fig. 2. Main differences between resting and primed microglia. 
The phenotype of  microglia in aging is predominantly primed. This phenotype responds to stimuli in a more intense manner, 
i.e., producing greater amounts of  pro-inflammatory mediators and for extended periods. Primed microglia induce persistent 
neuroinflammation, capable of  damaging tissue integrity and neuron function. Copyright, with permission from Pain Nursing 
Magazine.
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temic increase, although often not marked, in the levels 
of pro-inflammatory mediators such as tumor necrosis 
factor-α, interleukin-1, and interleukin-6, among oth-
ers (67). These pro-inflammatory mediators, some of 
which are vasoactive and others neurotoxic, act not only 
on somatosensory nerve endings but may also increase 
permeability of the blood-spinal cord barrier. Conse-
quently, toxins will enter the spinal cord parenchyma 
and act directly on activated microglia to enhance pain 
processes (central sensitization), favoring the onset of 
spinal neuroinflammation and neurodegeneration. 

Among chronic diseases characterized by low-
grade inflammation, mood disorders such as anxiety 
and depression can be both a causal trigger and a 
consequence of chronic pain (68). Neurodegenerative 
diseases, as well, are associated with persistent inflam-
matory processes that might negatively impact the 
elaboration of pain signaling (16). 

Patients with chronic pain, including those without 
a history of neurological disorders, frequently manifest 
cognitive deficits that negatively impact social relations 
and daily life. Many cognitive domains such as atten-
tion, concentration, processing speed, memory, psycho-
motor skills, decision making, and executive functions 
are negatively affected by pain (13). On the other hand, 
chronic pain syndromes are negatively associated with 
processes of attention and other forms of memory 
formation (69). In situations characterized by chronic 
pain and neurocognitive deficits, low-grade inflamma-

tion becomes a common thread and amplifier between 
these 2 conditions. In fact, peripheral somatosensory 
and spinal/supraspinal neurons, together with neuronal 
cell populations involved in the most common neuro-
degenerative disorders, can be damaged by persistent 
activation of the immune system (65).

Managing Pain in the Elderly
It is essential that pain in the elderly be treated so as 

to ensure a decorous quality of life, increase functional-
ity, and also to prevent domestic accidents (70-73) and/
or the onset of illnesses. Pain not adequately controlled 
is one of the main promoters of mood and sleep disor-
ders (74-78). It is fundamental that chronic and/or neu-
ropathic pain therapies in the elderly take into account 
the progressive physiological changes, which develop 
with advancing age (Table 1); have a wide benefit/risk 
profile; are suitable for chronic treatment; and do not 
interfere with poly-drug therapies that the elderly are 
necessarily subjected to (1,79,80). Unfortunately, none 
of the currently available therapies for pain treatment 
is suitable for prolonged use in the elderly (Table 2). 
Inevitably, the benefit/risk profile of most therapies 
favors the occurrence of adverse events with increas-
ing treatment time and drug dosage. For this reason, 
guidelines for pain management in the elderly suggest 
using non-steroidal anti-inflammatory drugs with cau-
tion, at the lowest dose and for the shortest duration 
practicable (79). Elderly persons taking non-steroidal 

Table 1. Age-related physiological changes and their clinical consequences.

System Change with ageing Clinical consequence

Absorption and 
function of the GI 
tract

Reduced:
• Motility of the large intestine
• Vitamin absorption by active transport mechanisms
• Splanchnic blood flow
• Bowel surface area

• Passive diffusion-little change in absorption with age 

Delayed gastric emptying and reduced peristalsis Increased risk of GI-related side effects

Distribution

Decreased body water Reduced distribution of water-soluble drugs

Increased body fat and accumulation of lipid-soluble drugs Lipid-soluble drugs have longer effective half-life

Decreased serum albumin and altered protein binding Increased potential for drug–drug interactions 

Hepatic-biliary
Decreased hepatic blood flow First-pass metabolism can be less effective

Reduced liver mass Phase I metabolism of some drugs might be slightly impaired

Renal excretion

Reduced renal blood flow
Reduced excretion of drugs and metabolites eliminated by 
kidney Reduced glomerular filtration

Reduced tubular secretion 

Pharmacodynamic 
changes

Decreased receptor density Increased sensitivity to the therapeutic and side effects

Increased receptor affinity

GI, gastrointestinal
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anti-inflammatory drugs require routine monitoring 
for potential gastrointestinal and hepatic risks, cardio-
vascular and renal side effects, and drug interactions 
(Table 2). The use of tricyclic antidepressants and an-
tiepileptic drugs is severely limited due to poor toler-
ability and significant side effects (79). Opioid use also 
has drawbacks: they act not only on neurons but also 
on non-neuronal cells such as microglia, astrocytes, and 
mast cells, causing their activation, which further pro-
motes the development of neuroinflammation (81,82). 
Notable side effects of these therapies are, in fact, at-
tributable to the activation of non-neuronal cells (83).

Non-neuronal cells may be important therapeutic 
targets for the treatment of chronic and/or neuropathic 
pain in both adults and the elderly (84). Molecules able 
to normalize activation of these cell populations, so as 
to limit development of neuroinflammatory processes 
and block the cascade of events promoting onset of 
changes in somatosensory neurons and central sensiti-

zation, would be especially desirable. Among molecules 
able to modify the course of disease (disease-modifying 
agent) palmitoylethanolamide (PEA) seems to merit in-
terest (85). PEA is an endogenous N-acylethanolamine 
produced on demand to promote the resolution of 
neuroinflammation and pain (86,87). PEA, when for-
mulated using appropriate pharmaceutical techniques 
that achieve micron or submicron particle sizes (85,88), 
administered exogenously seems able to: i) control re-
activity of tissue peripheral mast cells located in close 
proximity to nerve terminals and within the endoneural 
microenvironment, thereby normalizing the sensitivity 
and function of primary somatosensory peripheral neu-
rons (89,90); ii) act on spinal/supraspinal non-neuronal 
cells (microglia, resident or infiltrating mast cells, astro-
cytes) to counteract neuroinflammation and normalize 
the activity of second- and third-order somatosensory 
neurons (91,92). In this context PEA may be viewed as a 
modulator of immuno-neural homeostasis.

Table 2. Current pain management choices and limitations for the elderly.

Therapeutic 
options

Factors influencing choice of  therapy
Factors affecting quality of  life / pain 

intensity

Pain intensity 
and type

Other 
therapeutic 

effects
Side effects

Mental 
function

Social 
relationships

Physical 
function

NSAIDs/
acetominophen

• �Mild to 
moderate

• �Nociceptive 
acute 

• Gastric wall damage
• Can affect blood pressure control 
• Drug metabolizing interactions
• Liver and renal damage 
• �Must be withdrawn before surgery 

owing to bleeding potential
• Can impair immune function

• �Can improve 
agitation in 
elderly 

• Mobility 
improved 

Antidepressants

• �Moderate to 
severe 

• �Chronic 
and/or 
neuropathic 

Effective on 
anxiety and 
depression 

• Can affect blood pressure
• Can disrupt sleep
• Drug metabolizing interactions

• �Can improve 
cognitive 
performance 

• �Can positively 
influence 
mood

• �Mobility 
improved 

Antiepileptics

• �Moderate to 
severe 

• �Chronic 
and/or 
neuropathic 

Some treat 
anxiety 

• �Avoid gabapentanoids in the 
renal-impaired

• Drug metabolizing interactions 
• Sedation

• �Can blunt 
cognitive 
performance 

• �Can positively 
influence 
mood

• �Can cause 
sedation

Opioids

• �Moderate to 
severe pain

 • �Acute, 
occasionally 
chronic

• Abuse risk
• Sedation
• Can cause physical dependance
• Chronic constipation
• Can influence immune function

• �Can blunt 
cognitive 
performance

• �Treatment 
is negatively 
perceived by 
society 

• �Can 
influence 
hormonal 
balance 

Transdermal 
therapies

• �Neuropathic 
pain

• �Denervation of nociceptive fibres 
with capsaicin 8% patch

• �Transient increases in pain with 
capsaicin 8% patch

NSAIDs, non-steroidal anti-inflammatory drugs
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PEA – Experimental Pain Studies
Preclinical reports demonstrate the ability of PEA to 

reduce inflammation and pain induced by various acute 
stimuli (93). The effect of PEA administration by differ-
ent routes is dose-dependent. The anti-inflammatory 
and pain-relieving effects of PEA have been confirmed 
in models of chronic inflammation and chronic or neu-
ropathic pain (89,94-96). PEA prolonged treatment not 
only reduced pain but also preserved peripheral nerve 
morphology, and reduced endoneural edema, mast cell 
recruitment and activation, and the production of pro-
inflammatory mediators at the injury site (89,90,97). In 
models of neuropathic pain, PEA reduces activation of 
spinal cord microglia and increases production of the 
anti-inflammatory cytokine interleukin-10. The reader 
is referred to more detailed reviews on PEA anti-inflam-
matory and anti-pain effects in experimental models of 
inflammation (85,95).

PEA – Clinical Studies
Importantly, these preclinical investigations have 

translated into clinical studies demonstrating the 
efficacy of micronized and ultramicronized PEA (Nor-
mast®, Epitech Group, Saccolongo, PD, Italy) in reducing 
chronic and neuropathic pain associated with various 
pathological conditions, including those associated 
with central neuroinflammation (85) (Table 3). In such 
studies, including a recent meta-analysis (114) function 
goes beyond being a pain score, and represents both 
an assessment tool and goal in patient improvement. 
In a number of such studies reduction in pain was ac-
companied by increased functionality (98-104) and 
decreased use of analgesic drugs (102,105). Further, 
chronic treatment with micronized PEA brought about 
a reduction of pain intensity score in patients with che-
motherapy-induced peripheral neuropathy; this effect 
was paralleled by a partial improvement of function of 
all myelinated fiber groups, as assessed by neurophysi-
ologic measures (106). PEA’s ability to improve electro-
physiological parameters was also reported in carpal 
tunnel syndrome (102). 

Another highly desirable pharmacological feature 
of PEA is that its addition to ongoing standard thera-
pies for chronic or neuropathic pain in patients with 
unsatisfactory management of pain relief allows a sig-
nificant reduction of non-steroidal anti-inflammatory 
drug use (105,109). PEA treatment in association with 
carbamazepin, pregabalin, and oxycodone (99-101) 
elicited analgesic effects also when the latter drugs 
were used at non-therapeutic doses. This additive or 

synergistic effect of PEA probably reflects different 
mechanisms of action, in that these traditional anal-
gesic agents act primarily on neurons, whereas PEA 
targets mainly non-neuronal cells such as mast cells and 
microglia. Moreover, PEA treatment was effective in 
patients who had discontinued standard pain therapy 
because of noteworthy side effects. These data suggest 
that PEA may be used as first-line together with stan-
dard therapies, then progressively to reduce the use of 
other drugs until such time as PEA administration alone 
is sufficient for effective pain control.

At the preclinical level, PEA effects are not asso-
ciated with any changes in overt behavior, indicating 
the tested doses to be well-tolerated (85). PEA admin-
istration does not induce tolerance following repeated 
administration of high doses, and its effectiveness 
progressively increases with time of treatment (98,104). 
Moreover, when coupled with morphine treatment, 
PEA significantly attenuated development of tolerance, 
effectively doubling the number of days of morphine 
anti-nociceptive efficacy in comparison to the control 
group (112). Clinical studies show micronized and ultra-
micronized PEA to possess a highly favorable benefit/
risk profile suitable for chronic treatment, and to not 
interfere with treatments for co-morbid conditions 
(107). Micronized and ultramicronized PEA administra-
tion is devoid of acute and chronic toxicity (113), and 
there is no evidence for their use being associated with 
gastric mucosal lesions. 

Toxicological data, together with the safety/toler-
ability profile of micronized and ultramicronized PEA 
led to authorization by the Italian Ministry of Health 
for products based on PEA as “foods for special medi-
cal purposes” in compliance with European directive 
199/21/EC. This classification allows for free circulation 
of PEA in EU member countries and facilitates its accep-
tance by Ethics Committees for studies in man. PEA is 
now available as a “special food for medical purposes” 
in other European countries (e.g., Spain and Germany), 
as well.

Conclusions 
Pain management in the elderly remains a chal-

lenge for the clinician. Despite its high prevalence, this 
condition remains to a large extent underestimated 
and not adequately treated. There are multiple under-
lying factors behind this, since the physiological decline 
involves a series of changes implicating sensory circuits 
and the immune system, in particular mast cells and 
microglia, and the limited availability of effective and 
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Table 3. Main clinical studies demonstrating the pain-relieving effect of  micronized and ultra-micronized PEA, concomitant 
reduction in disability and/or improvement of  neurological functions and quality of  life.

Source of  pain PEA effects Ref

Osteoarthritis Temporomandibular joint
• greater pain score reduction 
• better maximum mouth opening 
• greater tolerability 

104

Chronic Pain

Lumbosciatica • pain score reduction 
• reduced disability 98

Lumbosciatica • pain score reduction 
• reduced exposure to anti-inflammatory or analgesic drugs 105

Various etiologies • pain score reduction  107

Cervicobrachial or sciatic pain 
• reduced chronic pain score
• reduced pain impact on emotional state
• reduced pain impact on employment

108

Low back pain • pain score reduction
• reduced disability 100

Diabetic neuropathy and postherpetic 
neuralgia 

• pain score reduction
• reduced disability 101

Carpal tunnel syndrome 
• reduced  median nerve latency time
• minor Tinel's sign presence 
• reduced discomfort  

102

Neuropathic 
pain

Chemotherapy-induced neuropathy • pain score reduction
• increased amplitude of foot-LEPs, sural-SNAPs, peroneal-CMAPs 106

Lumbosciatica • pain score reduction
• quality of life improvement 109

Diabetic polyneuropathy • pain relief
• reduced neuropathic symptoms 110

Diabetic and traumatic  polyneuropathy 
• pain relief
• reduced neuropathic symptoms
• quality of life improvement

111

LEPs, laser evoked potentials, SNAPs, sensory nerve action potentials CMAP, compound motor action
Potentials. 

safe therapeutic options. Among innovative therapies 
for treating pain in the elderly, PEA comes to the fore-
front owing to its high efficacy/risk ratio, and lack of 
both tolerance induction and interference with other 
potential therapies for pain and/or co-morbid condi-
tions. Finally, PEA may have intrinsic efficacy towards 
syndromes co-morbid with chronic pain, e.g. depres-
sion and anxiety (115,116). The progressive increase in 
the world’s elderly population coupled with a limited 
number of pain studies in the elderly reinforce the ur-
gency to fill our knowledge gaps in order that we may 

capitalize on innovative tools allowing us to choose 
therapeutics suitable for chronic use while ensuring 
efficacy, safety, and compatibility with multi-therapies.
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